FERMILAB-Pub-89/146-A June 1989

THE DIRAC EQUATION IN A NON-RIEMANNIAN MANIFOLD: II AN ANALYSIS USING AN INTERNAL LOCAL N-DIMENSIONAL SPACE OF THE YANG-MILLS TYPE

Sirley Marques

NASA/Fermilab Astrophysics Center Fermi National Accelerator Laboratory, M.S. 209 P.O. Box 500 Batavia, Illinois 60510, U.S.A.

- 1. The equation (1.8), page 2, should be written as: $q_{\mu\nu_i} = \frac{1}{2} \frac{iep^2}{\hbar} f_{\mu\nu_i}^{\mu\nu}$.
- 2. In the group of equations (2.9), page 7, we should have for $\Lambda^{\dagger}_{\alpha b}^{\ a}$, instead:

$$\Lambda^{\dagger}_{\alpha b} = (\Lambda_{\alpha b}^{a} - \delta_{b}^{a} C_{\alpha}) \tau_{0} - \delta_{b}^{a} \Gamma_{\alpha}$$

- 3. The equations (4.6), page 10, should be written as: $k_{ai}^{\mu} = i(p\lambda)^2 n_{ai}^{\mu}$, $\mu_i = i(p\lambda)^2 m_i .$
- 4. On page 11, before the first paragraph, we should have, instead: $|p| = \frac{-2\hbar}{5} = ...$
- 5. The equation (4.7), page 11, should be written as:

$$[k^{\mu}_{a\,0\,R}\gamma^a\nabla_{\mu}\psi]\tau_0+ip\lambda[n^{\mu}_{a\,0}\gamma^a\nabla_{\mu}\psi-m_0\psi]\tau_0+(ip\lambda)^2[n^{\mu}_{a\,i}\gamma^a\nabla_{\mu}\psi-m_i\psi]\tau_i=0 \ .$$

6. After the equation (4.7), page 11, it should read: "Consequently, we can get $n^2 + 1$ other sets of Dirac equations when we take $n_{a0}^{\mu}=n_{ai}^{\mu}=k_{a0R}^{\mu}\sim h_a^{\mu}$, and $m_0=m_i\equiv \mu_{0R}, \, {
m for \ each} \,\, i \,\, , \, {
m and} \,\, {
m where} \,\, h^\mu_a \,\, {
m and} \,\, \mu_{0R} \,\, {
m are} \,\, {
m taken} \,\, {
m as}....$